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My research is in combinatorics, a branch of mathematics that focuses on the study of discrete

structures. Instances of discrete structures arise in disciplines such as physics, computer science,

and other branches of mathematics. Oftentimes, the complexity of discrete structures can make

understanding them difficult. As a result, we study combinatorial objects which are easier to

understand, but still capture the structure. The most common question we answer about a colletion

of objects is “can we enumerate them?”, as answering this often reveals much about the object.

We can also study actions on an object to learn more about that object. Much of my research

has been in two distinct combinatorial areas, seeking to answer these questions. I will first outline

these areas before going into further depth.

(1) Toggle Dynamics

We can start with an object and repeatedly apply an action to an object, we get a sequence of

objects. This process terminates if we return to our original object; we will call the sequence of

objects an orbit. A typical question we answer is “can we show the orbits exhibit nice properties?”

An example application of this is a connection with the six vertex model of statistical physics. Part

of the Razumov-Stroganov Correspondence that relates combinatorics and statistical physics can

be explained by studying orbits of posets under toggle actions [13].

Toggles are local actions used to define global actions. Examples include the actions rowmotion

and promotion on order ideals of a poset. The orbits of these actions exhibit interesting properties.

J. Propp and T. Roby isolated a phenomenon in which a statistic on a set has the same average value

over any orbit as its global average, naming it homomesy. In [8], they proved that the cardinality

statistic on order ideals of the product of two chains poset under rowmotion and promotion exhibits

homomesy. In my research, I built on this to prove an analogous result in the case of the product

of three chains where one chain is of length two. In order to prove this result, I generalized the

recombination technique from [6] of D. Einstein and J. Propp from two to n dimensions. I also
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proved a number of corollaries, including a new result on increasing tableaux and a new result on

a Type B minuscule poset cross a chain of length two.

I have also been working with Dilks and Striker on toggle dynamics of increasing labelings,

which generalize results from [3]. There is an important connection between order ideals of posets

and increasing tableaux; we generalize this with a connection between increasing labelings and

order ideals of a more general class of posets. Additionally, rowmotion previously has only been

defined in the setting of a ranked poset cross a chain. We extend this to the product of any two

ranked posets.

(2) Non-attacking Rooks

An introductory combinatorics question one might ask is “how many ways can you place m rooks

on an n × n chessboard so that no two rooks are attacking each other?” Subsequent research has

extended this question to deeper theory, altering the initial question in ways such as replacing rooks

with pieces that move in different ways, determining the maximum number of non-attacking pieces

one could place on a board, or investigating connections to topics such as generating functions and

permutations. Several graduate students, my advisor, and I found an interesting problem by

exploring a particular three-person chessboard. We then generalized this board to a wider class of

boards, obtained by chaining square boards together. In [7], we counted maximum placements of

non-attacking rooks on these boards and established connections to permutations and alternating

sign matrices.

1. Toggle Dynamics

1.1. Posets and homomesy. A partially ordered set, or poset, is a general object and can

be used to represent integers under divisibility, subsets of a given set under inclusion, roots of Lie

groups and reflection groups, among others. A special subset of a poset is an order ideal; if an

element is in an order ideal, all elements less than or equal to that element must also be in the

order ideal. Another way to say this is that order ideals are closed downward; the notion relates

to ring ideals of algebra. We define an action on order ideals called a toggle; we toggle an element

of a poset in the following way. If an element is not in an order ideal and adding it would result

in an order ideal, we do so. If an element is in an order ideal and removing it would result in an

order ideal, we do so. Otherwise, we leave the element alone. By composing toggles, we obtain

interesting actions on order ideals.
2



One such action is rowmotion. When performing rowmotion on a poset, we toggle each element

in the poset in the order of top to bottom. Rowmotion has generated significant interest in recent

years [2, 3, 6, 8, 10, 14, 16]. This research is useful in the field of quantum computing, as a

particular class of posets captures quantum structure [16]. Order ideals exhibit another interesting

action called promotion. For posets in two dimensions, promotion can be described as toggling

each element in the poset in the order of left to right. Striker and Williams showed the following

intimate connection between rowmotion and promotion.

Theorem 1.1 ([14]). For any ranked poset, there is an equivariant bijection between the order

ideals under promotion and under rowmotion.

In other words, order ideals under rowmotion and promotion have the same orbit structure. Striker

and Williams found that in many cases, it was easier to determine the orbit sizes of promotion

compared to rowmotion. The reason for this is that in many cases, promotion is in equivariant

bijection with rotation on another object. As a result, when studying one of these actions, it can

be helpful to instead study the other.

Following this work, Dilks, Pechenik, and Striker generalized promotion to higher dimensions

[3]. Instead of sweeping through a two dimensional poset from left to right to determine toggle

order, we sweep through an n-dimensional poset with an affine hyperplane to determine toggle

order; we get a different promotion for each affine hyperplane. Additionally, we note that one of

these promotions is rowmotion.

We can also ask ourselves what it means for our orbits to be “nice”. One property that indicates

an orbit is nice is homomesy. An object, an action, and a statistic exhibit homomesy if the average

of the statistic over every orbit is the same as the global average of the statistic. Homomesy is

a widespread phenomenon, with examples found in actions on tableaux [1, 8], actions on binary

strings [9], rotations on permutation matrices [9], toggles on noncrossing partitions [5], Suter’s

action on Young diagrams [8] (with proof due to D. Einstein), linear maps acting on vector spaces

[8], a phase-shift action on simple harmonic motion [8], and others. Propp and Roby discovered

homomesy in a product of chains poset [a] × [b] for both promotion and rowmotion with statistic

the cardinality of the order ideal.
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Theorem 1.2 ([8]). Promotion on the order ideals of [a] × [b] with the cardinality statistic is

homomesic with average value ab/2.

Theorem 1.3 ([8]). Rowmotion on the order ideals of [a] × [b] with the cardinality statistic is

homomesic with average value ab/2.

Striker and Williams were able to relate the orbit structure of promotion and rowmotion; we

might wonder if there is a connection between the homomesy results of rowmotion and promotion.

Einstein and Propp answered this in the affirmative for [a] × [b] using a technique they called

recombination [6]. By taking particular layers of the posets from an orbit under rowmotion, we

can put these together to form an orbit under promotion. See Figure 4.

Row Row Row

Pro

(a) From an orbit of rowmotion, we used the
boxed layers to form a new order ideal, denoted
here in red.

Row Row Row

Pro

(b) From the same orbit of rowmotion, we use the
boxed layers to form a new order ideal, denoted
here in blue.

Figure 1. Performing promotion on the red order ideal results in the blue order ideal.

1.2. Results. With the generalization of promotion to higher dimensions [3], natural questions to

ask are whether the homomesy and recombination results generalize to higher dimensions. In my

research, I have answered the question about homomesy in the affirmative if the product of chains

is of the form [2]× [a]× [b]. More specifically, using the order ideal cardinality statistic and any of

the three dimensional promotion actions, J([2]× [a]× [b]) exhibits homomesy with average ab.

Theorem 1.4 ([15]). For any v = (±1,±1,±1), Prov on the order ideals of [2]× [a]× [b] with the

cardinality statistic is homomesic with average value ab.

Additionally, we can move the coordinate of the chain with length two, getting a similar result

for [a]× [2]× [b] and [a]× [b]× [2]. Using code in SageMath, I also determined that the result does

not hold in general in three dimensions, nor does the result hold in higher dimensions even when
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using just chains of length two. In other words, my result in Theorem 1.4 is the best result we

could attain.

The method I used to prove Theorem 1.4 is a generalized recombination result for not just three

dimensions, but n dimensions. The result says that if the vector defining our affine hyperplane

differs in one coordinate, we can take particular layers of our poset from an orbit under one of our

promotions and put them together to form an orbit under the other promotion.

Theorem 1.5 ([15]). Let I be an order ideal of [a1]×· · ·×[an]. Suppose we have v = (v1, v2, . . . , vn)

where vj = ±1, u = (u1, u2, . . . , un) where uj = ±1, vγ = 1, uγ = −1, and u and v are the same in

all other coordinates. Then Prou(∆γ
vI)=∆γ

v(Prov(I)).

Proving Theorem 1.4 also required a bijection introduced in [3] to objects called increasing

tableaux under an action called K-promotion. More specifically, I used a homomesy result from

[1] on increasing tableaux translated to the poset setting. After proving Theorem 1.4, I use the

same bijection to obtain a new homomesy result on increasing tableaux.

Corollary 1.6 ([15]). Let λ be an a× b rectangle and let σλ be the statistic of summing the entries

in the boxes of λ. Then (Inca+b+1(λ), K-Pro, σλ) is c-mesic with c = ab+ ab(a+b)
2 = ab(2+a+b)

2 .

Additionally, I generalized my recombination result from the product of chains setting to all

ranked posets, a much more general class of posets. See Figures 2 and 3 for an example.

Theorem 1.7 ([15]). Let P be a poset with n-dimensional lattice embedding π and I ∈ J(P ).

Suppose we have v = (v1, v2, . . . , vn) where vj = ±1, u = (u1, u2, . . . , un) where uj = ±1, v∗ =

(v1, . . . , vγ−1, vγ+1, . . . , vn), u∗ = (u1, . . . , uγ−1, uγ+1, . . . , un) and γ such that vγ = 1, uγ = −1,

and v∗ = u∗. Then Proπ,u(π−1(∆γ
v(π(I)))) = π−1(∆γ

v(π(Proπ,v(I)))).
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Figure 2. We use the red layers and blue layers from the partial orbit to form two
new order ideals.

Applying this theorem results in an easy corollary yielding homomesy on a Type B minuscule

poset cross a chain of length two.
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Figure 3. Applying promotion to the red order ideal gives us the blue order ideal.

Corollary 1.8 ([15]). Let f be the cardinality statistic and Bn denote the type B minuscule poset

of size n. For v = {±1,±1,±1}, the triple (J(Bn × [2]),Prov, f) is c-mesic with c = n2+n
2 .

1.3. Increasing labelings. In the above section, I refered to a bijection from [3] between the

product of three chains poset and increasing tableaux. Working with Dilks and Striker, we gener-

alized increasing tableaux to objects called increasing labelings [4]. More specifically, if P is a

poset, a function f : P → Z is an increasing labeling if x <P y implies that f(x) < f(y). Increasing

labelings have similar properties as increasing tableaux, but can take a much more general shape.

Our goal was to generalize the bijection between increasing tableaux and the product of chains

poset to increasing labelings and a larger class of posets.

1.4. Results. By constructing the right poset, Γ1(P,R), we were able to establish a bijection

between increasing labelings and order ideals of this poset.

Theorem 1.9 ([4]). Order ideals of Γ1(P,R) are in bijection with increasing labels on P with

restriction R.

The motivating bijection is an equivariant bijection between the product of chains poset under

rowmotion and increasing tableaux under K-promotion. Our next goal was to find an analogous

action on increasing tableaux to establish an equivariant bijection to Γ1(P,R) under rowmotion.

By generalizing the definition of K-promotion, we were able to define such an action, which we also

called promotion. From here, we obtained the desired result.

Theorem 1.10 ([4]). Let P be a poset and q ∈ N. There is an equivariant bijection between Incq(P )

under promotion and order ideals in Γ1(P, q) under rowmotion.

2. Non-attacking rooks

2.1. Results. The three-person chessboard that intialized this research is shown in Figure 4a. By

reorganizing the boards, as seen in Figures 4b and 5, we obtained an object consisting of 6 chained
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4 × 4 square boards. We generalize this to k chained n × n square boards. We also consider the

difference between connecting the first and last board (circular case) or having them unconnected

(linear case).

(a) A three-person chessboard; the dot repre-
sents a rook and the highlighted cells are the cells
the rook is attacking.

(b) We pull the board apart and represent con-
necting ranks and files with an edge.

Figure 4

Figure 5. By reorganizing boards, we can generalize to a larger class of boards.

Our first main result states how many ways we can place m non-attacking rooks on k chained

n× n board, for both the circular and linear case.

Theorem 2.1 ([7]). The number of ways to place m non-attacking rooks on board B ∈ {B−n,k, B
◦
n,k}

is
∑

(a1,...,ak)∈Cm(B)

k∏
i=1

(
n− ai−1

ai

)
(n)ai, where a0 is defined as follows: a0 =


0 if B = B−n,k

ak if B = B◦n,k.

From here, our enumeration inqueries focused on maximum placements of non-attacking rooks. In

other words, for a particular board, what is the largest number of non-attacking rooks we can place

and how many ways can we place them? We determined the maximum number of non-attacking

rooks for each type of board, then used Theorem 2.1 to enumerate the number of placements.

Theorem 2.2 ([7]). The number of maximum rook placements on B−n,k is given by:
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• Case k even: (n!)
k
2

∑
0≤j1≤...≤j k

2
≤n

k
2∏
`=1

(
n− j`−1
n− j`

)(
n

j`

)
.

• Case k odd: (n!)
k+1
2 ,

Theorem 2.3 ([7]). The number of maximum rook placements on B◦n,k is given by:

• Case k even: (n!)
k
2

n∑
j=0

(
n

j

) k
2

,

• Case k odd, n even:
(

(n)n
2

)k
,

• Case k odd, n odd: k
(

(n)dn
2
e

)b k
2
c (

(n)bn
2
c

)d k
2
e
.

A square board of size n×n with n non-attacking rooks is in bijection with n×n permutation

matrices, and as a result, permutations of n. Because our objects are square boards chained

together, it was natural to define the notion of a chained permutation. We generalized several

concepts related to permutations to their chained permutation analogues, including one-line no-

tation and perfect matchings. Furthermore, n×n alternating sign matrices generalize n×n

permutation matrices; we were able to define a chained analogue of alternating sign matrices as

well.

0 1 0 0
1 0 0
0 0 1 0
0 0 0 0

-1
0 0 0
0 1 0

0 1 -1 0
0 0 0

0
0

1

0 0 0
0 0 0 1
1 0 -1 0
0 0 1 -1

1 0 0 1
0 0 0
0 1 -1
0 0 0 1

0
0

0

0 0 0 0
0 0 1 0
0 1 -1 1
0 0 1 -1

0 0 0
0 1 0 0
1 -1 0
0 0 1

0

0
0

Figure 6. A 4× 4 chained alternating sign matrix where k = 6.

For some cases, we were able to enumerate the number of distinct chained alternating sign

matrices.

Corollary 2.4 ([7]). For k odd, |ASM−n,k| =

(
n−1∏
k=0

(3k + 1)!

(n+ k)!

) k+1
2

.

Corollary 2.5 ([7]). |ASM◦n,4| =
2n−1∏
k=0

(3k + 1)!

(2n+ k)!
.

Corollary 2.6 ([7]). |ASM◦2m,1| =

(
m−1∏
k=0

(3k + 1)!

(m+ k)!

)3 m∏
i=1

3i− 1

3i− 2

m∏
j=i

m+ i+ j − 1

2i+ j − 1

.
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Although we could not find a general enumeration formula, I wrote code to generate all chained

alternating sign matrices for small n and k. Additionally, we defined chained analogues of objects

in bijection with alternating sign matrices: monotone triangles, square ice configurations,

and fully-packed loops.

3. Future Work

All previously stated toggle action results have applied strictly to finite posets. I am currently

generalizing rowmotion and promotion to ranked infinite posets. Much of the intuition from the

finite case is lost, as we are no longer guaranteed to obtain finite orbits. Because of this, I am looking

for connections to other fields such as dynamical systems and algebra for both intuition and to see

if these interesting actions would be useful answering questions in other fields. Monomial ideals are

a promising avenue, as order ideals and monomial ideals are closely connected. Furthermore, the

action of rowmotion was originally defined in terms of generators, and the generators of monomial

ideals are heavily studied by algebraists.

As mentioned above, I have frequently used the open source software SageMath [12] to perform

calculations for my research. In addition to writing a significant amount of code for myself, I’ve

also contributed code that has been included in SageMath. I plan to write more code to investigate

future projects and contribute my recent homomesy code to SageMath.

One strength of combinatorics is that there are a wide variety of topics that would make great

projects for undergraduates. Much of my previous research can be explained to an undergraduate

student without a tremendous amount of background theory. Additionally, there are several natural

directions to proceed from my results, such as searching for homomesy on different posets or using

different statistics. Another great aspect of combinatorics research is the availability of SageMath

to compute examples. If a student has a background in programming, writing code in SageMath

would be an excellent way for them to contribute to a research project; if a student doesn’t have a

strong background in programming, writing small pieces of code would be a good way to improve

their coding skills. I have put some of these ideas into practice, as I am currently advising an

undergraduate student on his senior capstone project at North Dakota State.

Although I mentioned my main research above, I have also done combinatorial research in the

field of Ramsey theorey [11]. More specifically, for my Master’s thesis at South Dakota State, I

studied colorings on the integers. To give a broad summary: given two colors and an inequality,
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I found the length required to guarantee there were integers all in the same color that satisfied

the inequality. I have enjoyed all three areas of research, toggle dynamics, rook placements, and

Ramsey theory. Moreover, I would love to continue research in any three of these areas as part of

undergraduate projects.
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